$\gamma = 74.103 \ (5)^{\circ}$

Z = 2

V = 2479.5 (4) Å³

Mo $K\alpha$ radiation

 $0.38 \times 0.37 \times 0.13 \text{ mm}$

24291 measured reflections

9073 independent reflections

7765 reflections with $I > 2\sigma(I)$

 $\mu = 4.50 \text{ mm}^{-1}$

T = 193 (2) K

 $R_{\rm int} = 0.039$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tris(diphenylpropylphosphine-*κP*)-μ₂iodido-tri- μ_3 -sulfido-sulfidotricopper(I)tungsten(VI)

Guodong Tang

Huaiyin Teachers College, Huai'an 223001, Jiangsu, People's Republic of China Correspondence e-mail: tanggd68@yahoo.com.cn

Received 25 August 2008; accepted 22 September 2008

Key indicators: single-crystal X-ray study; T = 193 K; mean σ (C–C) = 0.009 Å; R factor = 0.039; wR factor = 0.083; data-to-parameter ratio = 17.9.

A neutral W/S/Cu cluster, $[Cu_3WIS_4(C_{15}H_{17}P)_3]$, was formed by the reaction of tetrathiotungstate(VI). CuI and diphenvlpropylphosphine (dpp) in dimethylformamide. The title compound exhibits a neutral half-open cubane-like skeleton, with Cu-I bonds of 2.8056 (8) and 2.9008 (8) Å, and one $Cu \cdot \cdot I$ short contact of 3.1722 (6) Å. The W atom exhibits a tetrahedral coordination geometry through bonding to three μ_3 -S and one terminal S atom. The three Cu^I atoms are in two different coordination environments: one Cu atom exhibits a triangular coordination geometry being coordinated by one P atom from dpp and two μ_3 -S atoms, whereas the remaining two Cu centers are tetrahedrally coordinated, forming the CuPIS₂ core.

Related literature

For an anionic W/S/Cu cluster with a half-open cubane-like skeleton, see: Hou, Liang et al. (1996). Mo(W)/S/Cu(Ag) clusters have been reviewed by Hou, Xin et al. (1996) and Niu et al. (2004). The potential applications of Mo(W)/S/Cu(Ag) clusters have been reviewed by Müller et al. (1981) and Zhang et al. (2007).

Experimental

Crystal data

$[Cu_3WIS_4(C_{15}H_{17}P)_3]$	
$M_r = 1314.38$	
Triclinic, P1	
a = 11.7161 (10) Å	
b = 13.1040 (13) Å	
c = 17.1958 (15) Å	
$\alpha = 86.491 \ (6)^{\circ}$	
$\beta = 77.568 \ (5)^{\circ}$	

Data collection

Rigaku Mercury diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.196, T_{\max} = 0.557$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	506 parameters
$wR(F^2) = 0.083$	H-atom parameters constrained
S = 1.09	$\Delta \rho_{\rm max} = 1.36 \text{ e} \text{ Å}^{-3}$
9073 reflections	$\Delta \rho_{\rm min} = -1.20 \text{ e} \text{ Å}^{-3}$

Table 1		
Selected	bond lengths	(Å)

W1-S4	2.1314 (15)	Cu1-S3	2.3094 (15)
W1-S1	2.2445 (13)	Cu1-S1	2.3194 (14)
W1-S3	2.2483 (13)	Cu2-P2	2.2241 (14)
W1-S2	2.2533 (13)	Cu2-S1	2.3015 (15)
W1-Cu3	2.7033 (7)	Cu2-S2	2.3036 (15)
W1-Cu1	2.7173 (8)	Cu3-P3	2.2209 (15)
W1-Cu2	2.7272 (7)	Cu3-S2	2.2833 (15)
Cu1-P1	2.2150 (16)	Cu3-S3	2.2849 (15)

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Financial support from the Science and Technology Development Fund of Huai'an city (No. HAG07014) is acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2166).

References

- Hou, H. W., Liang, B., Xin, X., Yu, K., Ge, P., Ji, W. & Shi, S. (1996). J. Chem. Soc. Faraday Trans. 92, 2343-2346.
- Hou, H. W., Xin, X. Q. & Shi, S. (1996). Coord. Chem. Rev. 153, 25-56.
- Müller, A., Diemann, E., Jostes, R. & Bögge, H. (1981). Angew. Chem. Int. Ed. Engl. 20, 934-955
- Niu, Y. Y., Zheng, H. G., Hou, H. W. & Xin, X. Q. (2004). Coord. Chem. Rev. 248, 169-183.
- Rigaku (2000). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zhang, C., Song, Y. L. & Wang, X. (2007). Coord. Chem. Rev. 251, 111-141.

Acta Cryst. (2008). E64, m1421 [doi:10.1107/S1600536808030390]

Tris(diphenylpropylphosphine- κP)- μ_2 -iodido-tri- μ_3 -sulfido-sulfidotricopper(I)tungsten(VI)

G. Tang

Comment

Mo(W)/S/Cu(Ag) clusters have attracted much attention for their diverse architectures (How, Xin *et al.*, 1996; Niu *et al.*, 2004) and potential applications (Müller *et al.*, 1981; Zhang *et al.*, 2007) but the crystal structures of these clusters containing diphenylpropylphosphine ligands have not been reported until now. In order to explore the chemistry of Mo(W)/S/Cu(Ag) clusters extensively, we have synthesized the cluster by reaction in solution at normal temperatures.

As illustrated in Fig. 1, the title compound has a half-open cubane-like skeleton, in which W atom adopts a distorted tetrahedral coordination geometry through bonding to three μ_3 -S and a terminal S atoms. Three Cu atoms have two kinds of coordination environments: one is coordinated by one P atom from dpp and two μ_3 -S forming a triangular coordination geometry, and another two have a tetrahedral coordination geometry formed by one P atom from dpp, one μ_2 -I and two μ_3 -S. Interestingly, the Cu—I bonds [2.8056 (8) Å and 2.9008 (8) Å] in the title compound are obviously shorter than those [(2.942 (4) Å] in theanionic W/S/Cu cluster with the same skeleton (Hou, Liang *et al.*, 1996).

Experimental

3 mmol CuI, 1 mmol $[NH_4]_2WS_4$ and 3 mmol dpp were added to 5 mL dmf with thorough stirring for 5 minutes. After filtration, the orange-red filtrate was carefully laid on the surface with 30 ml *i*-PrOH. Yellow block crystals were obtained after ten days. Yield: 0.0341 g in pure form, 70.1% (based on W). Analysis calculated for C₄₅H₅₁Cu₃IP₃S₄W: C 41.12, H 3.91%; found: C 41.10, H 3.90%. IR: v, cm⁻¹,480.68, 444.74 s (W- μ_3 -S).

Refinement

H atoms were positioned geometrically with C-H = 0.95-0.99 Å and refined in riding model approximation, with $U_{iso} = 1.5U_{eq}$ for methyl H atoms and $1.2U_{eq}$ for H atoms from methylene and phenyl groups.

Figures

Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids. All H atoms have been omitted.

$Tris(diphenylpropylphosphine - \kappa P) - \mu_2 - iodido - tri - \mu_3 - sulfido - sulfido tricopper (I) tungsten (VI)$

Crystal data	
$[Cu_3WIS_4(C_{15}H_{17}P)_3]$	Z = 2
$M_r = 1314.38$	$F_{000} = 1288$
Triclinic, P1	$D_{\rm x} = 1.760 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation $\lambda = 0.71070$ Å
a = 11.7161 (10) Å	Cell parameters from 9051 reflections
b = 13.1040 (13) Å	$\theta = 3.2 - 25.3^{\circ}$
c = 17.1958 (15) Å	$\mu = 4.50 \text{ mm}^{-1}$
$\alpha = 86.491 \ (6)^{\circ}$	T = 193 (2) K
$\beta = 77.568 \ (5)^{\circ}$	Block, orange
$\gamma = 74.103 \ (5)^{\circ}$	$0.38\times0.37\times0.13~mm$
V = 2479.5 (4) Å ³	

Data collection

Rigaku Mercury diffractometer	9073 independent reflections
Radiation source: fine-focus sealed tube	7765 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.039$
Detector resolution: 7.31 pixels mm ⁻¹	$\theta_{max} = 25.4^{\circ}$
T = 193(2) K	$\theta_{\min} = 3.2^{\circ}$
ω scans	$h = -14 \rightarrow 13$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$k = -15 \rightarrow 15$
$T_{\min} = 0.196, \ T_{\max} = 0.557$	<i>l</i> = −20→18
24291 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier ma
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.039$	H-atom parameters constrained
$wR(F^2) = 0.083$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0305P)^{2} + 3.084P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.09	$(\Delta/\sigma)_{\text{max}} = 0.001$
9073 reflections	$\Delta \rho_{max} = 1.36 \text{ e } \text{\AA}^{-3}$
506 parameters	$\Delta \rho_{min} = -1.20 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

difference Fourier map

Primary atom site Extinction correction: none methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
W1	0.231242 (18)	0.395552 (17)	0.228219 (12)	0.02162 (7)
I1	0.04088 (3)	0.15726 (3)	0.25752 (2)	0.03494 (11)
Cu1	0.27335 (6)	0.18233 (5)	0.24969 (4)	0.03150 (17)
Cu2	0.03224 (6)	0.35612 (6)	0.32704 (4)	0.02940 (17)
Cu3	0.11527 (6)	0.32641 (6)	0.13088 (4)	0.03415 (18)
S1	0.22840 (12)	0.31168 (11)	0.34612 (7)	0.0243 (3)
S2	0.03705 (12)	0.46591 (11)	0.21720 (8)	0.0270 (3)
S3	0.31753 (12)	0.27256 (11)	0.13230 (8)	0.0280 (3)
S4	0.32984 (14)	0.51184 (13)	0.21978 (9)	0.0412 (4)
P1	0.39067 (13)	0.02190 (11)	0.26649 (9)	0.0293 (3)
P2	-0.12091 (12)	0.39157 (11)	0.43205 (8)	0.0235 (3)
P3	0.04133 (13)	0.30253 (11)	0.02686 (8)	0.0266 (3)
C1	0.4102 (5)	-0.0724 (4)	0.1889 (3)	0.0290 (13)
C2	0.3512 (6)	-0.1520 (5)	0.1976 (4)	0.0519 (19)
H2	0.2976	-0.1594	0.2463	0.062*
C3	0.3705 (8)	-0.2213 (6)	0.1347 (4)	0.065 (2)
H3	0.3294	-0.2755	0.1409	0.078*
C4	0.4476 (7)	-0.2122 (5)	0.0642 (4)	0.0519 (18)
H4	0.4610	-0.2605	0.0221	0.062*
C5	0.5052 (6)	-0.1336 (5)	0.0547 (4)	0.0462 (17)
Н5	0.5581	-0.1267	0.0055	0.055*
C6	0.4871 (5)	-0.0641 (5)	0.1159 (3)	0.0378 (15)
H6	0.5277	-0.0095	0.1082	0.045*
C7	0.5437 (5)	0.0212 (5)	0.2712 (3)	0.0326 (13)
C8	0.6366 (5)	-0.0748 (5)	0.2656 (4)	0.0400 (15)
H8	0.6197	-0.1396	0.2570	0.048*
C9	0.7516 (6)	-0.0749 (6)	0.2725 (4)	0.0492 (17)
H9	0.8142	-0.1394	0.2680	0.059*
C10	0.7756 (6)	0.0192 (6)	0.2860 (4)	0.0501 (18)
H10	0.8547	0.0187	0.2916	0.060*
C11	0.6864 (6)	0.1135 (6)	0.2916 (4)	0.0490 (17)
H11	0.7037	0.1782	0.3003	0.059*
C12	0.5709 (6)	0.1129 (5)	0.2844 (4)	0.0390 (15)

H12	0.5090	0.1779	0.2889	0.047*
C13	0.3401 (8)	-0.0445 (6)	0.3588 (4)	0.0693 (14)
H13A	0.2615	-0.0582	0.3577	0.083*
H13B	0.3997	-0.1138	0.3622	0.083*
C14	0.3255 (8)	0.0205 (6)	0.4322 (4)	0.0693 (14)
H14A	0.3979	0.0476	0.4269	0.083*
H14B	0.2543	0.0827	0.4340	0.083*
C15	0.3100 (8)	-0.0366 (6)	0.5076 (4)	0.0693 (14)
H15A	0.3786	-0.0998	0.5060	0.104*
H15B	0.2344	-0.0581	0.5161	0.104*
H15C	0.3066	0.0096	0.5512	0.104*
C16	-0.0945 (5)	0.3076 (4)	0.5184 (3)	0.0270 (12)
C17	-0.0496 (6)	0.1991 (5)	0.5066 (4)	0.0390 (15)
H17	-0.0319	0.1712	0.4544	0.047*
C18	-0.0303 (6)	0.1313 (5)	0.5699 (4)	0.0449 (16)
H18	-0.0006	0.0570	0.5609	0.054*
C19	-0.0537(5)	0.1701 (5)	0.6459 (4)	0.0407 (15)
H19	-0.0398	0.1231	0.6893	0.049*
C20	-0.0970 (6)	0.2770 (5)	0.6583 (3)	0.0440 (16)
H20	-0.1133	0.3042	0.7107	0.053*
C21	-0.1173 (6)	0.3462 (5)	0.5954 (3)	0.0397 (15)
H21	-0.1470	0.4203	0.6050	0.048*
C22	-0.2653(5)	0 3793 (4)	0.4156 (3)	0.0279(13)
C23	-0.3520(6)	0.3547 (6)	0.4772(4)	0.0273(18)
H23	-0.3335	0.3353	0.5282	0.060*
C24	-0.4655(6)	0.3587 (7)	0.3282	0.066(2)
H24	-0.5241	0.3400	0.5054	0.000 (2)
C25	-0.4946(6)	0.3400	0.3034	0.030
H25	-0.5736	0.3031 (0)	0.3832	0.038 (2)
C26	-0.4092(6)	0.3333	0.3832	0.070°
U20	0.4092 (0)	0.4123 (0)	0.3311 (4)	0.0550 (19)
C27	-0.4200	0.4323	0.2800	0.004°
U27	-0.2940 (3)	0.4073 (3)	0.3421 (4)	0.0383 (13)
H2/	-0.2352	0.4230	0.2993	0.046*
C28	-0.1643 (5)	0.5282 (4)	0.4691 (3)	0.0262 (12)
H28A	-0.2342	0.5365	0.5145	0.031*
H28B	-0.0960	0.5404	0.4890	0.031*
C29	-0.1980 (5)	0.6121 (4)	0.4067 (3)	0.0345 (14)
H29A	-0.1282	0.6045	0.3612	0.041*
H29B	-0.2666	0.6005	0.3867	0.041*
C30	-0.2334 (6)	0.7239 (4)	0.4396 (3)	0.0384 (15)
H30A	-0.3011	0.7314	0.4856	0.058*
H30B	-0.2580	0.7751	0.3983	0.058*
H30C	-0.1639	0.7375	0.4561	0.058*
C31	-0.1234 (5)	0.3445 (4)	0.0415 (3)	0.0257 (12)
C32	-0.1901 (5)	0.3094 (4)	0.1096 (3)	0.0322 (13)
H32	-0.1495	0.2679	0.1478	0.039*
C33	-0.3154 (5)	0.3345 (5)	0.1222 (3)	0.0364 (14)
H33	-0.3598	0.3074	0.1678	0.044*
C34	-0.3758 (5)	0.3977 (5)	0.0697 (4)	0.0432 (16)

H34	-0.4618	0.4159	0.0793	0.052*
C35	-0.3106 (6)	0.4350 (6)	0.0024 (4)	0.0500 (18)
H35	-0.3520	0.4795	-0.0342	0.060*
C36	-0.1849 (5)	0.4074 (5)	-0.0117 (3)	0.0389 (15)
H36	-0.1407	0.4322	-0.0585	0.047*
C37	0.0811 (5)	0.1674 (5)	-0.0073 (3)	0.0334 (14)
C38	0.0241 (6)	0.1409 (5)	-0.0636 (4)	0.0476 (17)
H38	-0.0421	0.1916	-0.0793	0.057*
C39	0.0649 (8)	0.0396 (6)	-0.0965 (4)	0.069 (3)
H39	0.0272	0.0207	-0.1350	0.082*
C40	0.1613 (8)	-0.0331 (6)	-0.0723 (6)	0.073 (3)
H40	0.1900	-0.1020	-0.0952	0.087*
C41	0.2148 (7)	-0.0084 (6)	-0.0176 (6)	0.072 (2)
H41	0.2803	-0.0598	-0.0017	0.086*
C42	0.1754 (6)	0.0913 (5)	0.0161 (4)	0.0480 (17)
H42	0.2132	0.1078	0.0556	0.058*
C43	0.0976 (5)	0.3685 (5)	-0.0647 (3)	0.0347 (14)
H43A	0.0603	0.3537	-0.1077	0.042*
H43B	0.0725	0.4461	-0.0560	0.042*
C44	0.2350 (5)	0.3321 (5)	-0.0910 (4)	0.0432 (16)
H44A	0.2723	0.3505	-0.0492	0.052*
H44B	0.2605	0.2540	-0.0968	0.052*
C45	0.2813 (6)	0.3820 (5)	-0.1691 (4)	0.0529 (19)
H45A	0.2459	0.3630	-0.2110	0.079*
H45B	0.3699	0.3560	-0.1834	0.079*
H45C	0.2581	0.4594	-0.1634	0.079*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
W1	0.01802 (12)	0.02671 (13)	0.01979 (12)	-0.00629 (9)	-0.00151 (9)	-0.00471 (9)
I1	0.0288 (2)	0.0363 (2)	0.0431 (2)	-0.01358 (18)	-0.00673 (17)	-0.00604 (18)
Cu1	0.0310 (4)	0.0281 (4)	0.0307 (4)	0.0010 (3)	-0.0059 (3)	-0.0068 (3)
Cu2	0.0182 (3)	0.0405 (4)	0.0250 (4)	-0.0046 (3)	0.0008 (3)	0.0003 (3)
Cu3	0.0281 (4)	0.0449 (4)	0.0304 (4)	-0.0048 (3)	-0.0112 (3)	-0.0121 (3)
S1	0.0218 (7)	0.0306 (8)	0.0204 (7)	-0.0050 (6)	-0.0057 (5)	-0.0032 (6)
S2	0.0207 (7)	0.0312 (8)	0.0257 (7)	-0.0008 (6)	-0.0054 (6)	-0.0007 (6)
S3	0.0226 (7)	0.0374 (8)	0.0210 (7)	-0.0046 (6)	-0.0002 (6)	-0.0096 (6)
S4	0.0408 (9)	0.0425 (10)	0.0435 (9)	-0.0205 (8)	-0.0023 (7)	-0.0038 (7)
P1	0.0255 (8)	0.0270 (8)	0.0332 (8)	-0.0029 (6)	-0.0053 (6)	-0.0056 (6)
P2	0.0173 (7)	0.0291 (8)	0.0242 (7)	-0.0073 (6)	-0.0020 (6)	-0.0035 (6)
P3	0.0241 (8)	0.0305 (8)	0.0261 (8)	-0.0056 (6)	-0.0076 (6)	-0.0065 (6)
C1	0.030 (3)	0.022 (3)	0.033 (3)	-0.004 (2)	-0.004 (3)	-0.006 (2)
C2	0.067 (5)	0.056 (4)	0.037 (4)	-0.034 (4)	0.005 (3)	-0.007 (3)
C3	0.100 (6)	0.046 (4)	0.061 (5)	-0.046 (4)	-0.006 (5)	-0.004 (4)
C4	0.066 (5)	0.037 (4)	0.051 (4)	-0.006 (4)	-0.013 (4)	-0.018 (3)
C5	0.041 (4)	0.056 (4)	0.035 (4)	-0.003 (3)	0.000 (3)	-0.015 (3)
C6	0.036 (4)	0.037 (4)	0.037 (4)	-0.008 (3)	-0.003 (3)	-0.004 (3)

C7	0.035 (3)	0.035 (3)	0.032 (3)	-0.011 (3)	-0.013 (3)	0.002 (3)
C8	0.036 (4)	0.039 (4)	0.046 (4)	-0.010 (3)	-0.011 (3)	0.003 (3)
C9	0.034 (4)	0.052 (4)	0.057 (4)	-0.004 (3)	-0.010 (3)	0.015 (3)
C10	0.030 (4)	0.065 (5)	0.061 (5)	-0.017 (4)	-0.017 (3)	0.009 (4)
C11	0.042 (4)	0.053 (4)	0.058 (4)	-0.019 (4)	-0.015 (3)	0.003 (3)
C12	0.037 (4)	0.029 (3)	0.049 (4)	-0.002 (3)	-0.013 (3)	0.002 (3)
C13	0.099 (4)	0.059 (3)	0.042 (2)	-0.016 (3)	-0.004 (2)	-0.004 (2)
C14	0.099 (4)	0.059 (3)	0.042 (2)	-0.016 (3)	-0.004 (2)	-0.004 (2)
C15	0.099 (4)	0.059 (3)	0.042 (2)	-0.016 (3)	-0.004 (2)	-0.004 (2)
C16	0.017 (3)	0.029 (3)	0.032 (3)	-0.007 (2)	0.001 (2)	-0.002 (2)
C17	0.044 (4)	0.034 (4)	0.039 (4)	-0.010 (3)	-0.009 (3)	-0.002 (3)
C18	0.055 (4)	0.026 (3)	0.054 (4)	-0.009 (3)	-0.015 (3)	0.003 (3)
C19	0.036 (4)	0.038 (4)	0.043 (4)	-0.005 (3)	-0.005 (3)	0.010 (3)
C20	0.050 (4)	0.050 (4)	0.023 (3)	-0.002 (3)	-0.003 (3)	0.002 (3)
C21	0.045 (4)	0.033 (3)	0.033 (3)	-0.002 (3)	-0.001 (3)	-0.005 (3)
C22	0.018 (3)	0.031 (3)	0.033 (3)	-0.003 (2)	-0.003 (2)	-0.010 (2)
C23	0.031 (4)	0.071 (5)	0.050 (4)	-0.023 (4)	0.002 (3)	0.001 (4)
C24	0.027 (4)	0.099 (6)	0.077 (6)	-0.031 (4)	0.004 (4)	-0.012 (5)
C25	0.029 (4)	0.077 (5)	0.073 (5)	-0.013 (4)	-0.013 (4)	-0.037 (4)
C26	0.036 (4)	0.072 (5)	0.056 (4)	-0.008 (4)	-0.019 (3)	-0.024 (4)
C27	0.036 (4)	0.045 (4)	0.036 (4)	-0.010 (3)	-0.008 (3)	-0.015 (3)
C28	0.023 (3)	0.031 (3)	0.027 (3)	-0.009 (2)	-0.007 (2)	-0.007 (2)
C29	0.040 (4)	0.032 (3)	0.033 (3)	-0.008 (3)	-0.014 (3)	0.001 (3)
C30	0.048 (4)	0.029 (3)	0.039 (4)	-0.011 (3)	-0.010 (3)	0.003 (3)
C31	0.025 (3)	0.030 (3)	0.024 (3)	-0.007 (2)	-0.009 (2)	-0.005 (2)
C32	0.034 (3)	0.029 (3)	0.031 (3)	-0.004 (3)	-0.006 (3)	-0.006 (2)
C33	0.030 (3)	0.042 (4)	0.036 (3)	-0.010 (3)	-0.001 (3)	-0.010 (3)
C34	0.022 (3)	0.059 (4)	0.045 (4)	-0.004 (3)	-0.006 (3)	-0.011 (3)
C35	0.038 (4)	0.065 (5)	0.044 (4)	-0.002 (3)	-0.021 (3)	0.006 (3)
C36	0.029 (3)	0.058 (4)	0.031 (3)	-0.013 (3)	-0.008 (3)	0.001 (3)
C37	0.032 (3)	0.033 (3)	0.034 (3)	-0.015 (3)	0.005 (3)	-0.010 (3)
C38	0.058 (4)	0.049 (4)	0.039 (4)	-0.026 (4)	0.000 (3)	-0.009 (3)
C39	0.103 (7)	0.065 (5)	0.043 (4)	-0.047 (5)	0.013 (4)	-0.024 (4)
C40	0.068 (6)	0.037 (5)	0.091 (7)	-0.013 (4)	0.032 (5)	-0.012 (4)
C41	0.047 (5)	0.047 (5)	0.109 (7)	-0.008 (4)	0.005 (5)	-0.004 (5)
C42	0.040 (4)	0.032 (4)	0.068 (5)	-0.006 (3)	-0.008 (3)	0.001 (3)
C43	0.035 (3)	0.036 (3)	0.035 (3)	-0.009 (3)	-0.010 (3)	-0.003 (3)
C44	0.028 (3)	0.045 (4)	0.052 (4)	-0.006 (3)	-0.003 (3)	0.003 (3)
C45	0.037 (4)	0.053 (4)	0.058 (4)	-0.008 (3)	0.006 (3)	0.004 (3)
Commercia	(Å 0)					
Geometric p	urumeters (A, ⁻)		_			
W1—S4		2.1314 (15)	C17	C17—C18 1.380 (8)		80 (8)
W1—S1		2.2445 (13)	3) C17—H17 0.9500		500	
W1—S3		2.2483 (13)	C18	—C19	1.3	76 (8)
W1—S2		2.2533 (13)	C18	—H18	0.9	500
W1—Cu3		2.7033 (7)	C19		1.3	65 (8)

2.7173 (8)

2.7272 (7)

C19—H19

C20-C21

0.9500

1.386 (8)

W1—Cu1

W1-Cu2

I1—Cu1	2.8056 (8)	С20—Н20	0.9500
I1—Cu2	2.9008 (8)	C21—H21	0.9500
Cu1—P1	2.2150 (16)	C22—C27	1.378 (8)
Cu1—S3	2.3094 (15)	C22—C23	1.391 (8)
Cu1—S1	2.3194 (14)	C23—C24	1.385 (9)
Cu2—P2	2.2241 (14)	С23—Н23	0.9500
Cu2—S1	2.3015 (15)	C24—C25	1.369 (10)
Cu2—S2	2.3036 (15)	C24—H24	0.9500
Cu3—P3	2.2209 (15)	C25—C26	1.358 (10)
Cu3—S2	2.2833 (15)	С25—Н25	0.9500
Cu3—S3	2.2849 (15)	C26—C27	1.386 (8)
P1—C1	1.809 (5)	С26—Н26	0.9500
P1—C7	1.809 (6)	С27—Н27	0.9500
P1—C13	1.826 (7)	C28—C29	1.522 (7)
P2—C16	1.823 (6)	C28—H28A	0.9900
P2—C22	1.825 (5)	C28—H28B	0.9900
P2C28	1.835 (5)	C29—C30	1.519 (7)
P3—C37	1.804 (6)	С29—Н29А	0.9900
P3—C31	1.821 (5)	С29—Н29В	0.9900
P3—C43	1.833 (6)	C30—H30A	0.9800
C1—C2	1.386 (8)	C30—H30B	0.9800
C1—C6	1.397 (7)	С30—Н30С	0.9800
C2—C3	1.396 (9)	C31—C36	1.378 (8)
С2—Н2	0.9500	C31—C32	1.390 (7)
C3—C4	1.367 (9)	C32—C33	1.385 (8)
С3—Н3	0.9500	С32—Н32	0.9500
C4—C5	1.362 (9)	C33—C34	1.365 (8)
C4—H4	0.9500	С33—Н33	0.9500
C5—C6	1.378 (8)	C34—C35	1.384 (9)
С5—Н5	0.9500	С34—Н34	0.9500
С6—Н6	0.9500	C35—C36	1.387 (8)
C7—C12	1.369 (8)	С35—Н35	0.9500
С7—С8	1.413 (8)	С36—Н36	0.9500
C8—C9	1.378 (8)	C37—C42	1.385 (9)
С8—Н8	0.9500	C37—C38	1.395 (8)
C9—C10	1.380 (9)	C38—C39	1.392 (9)
С9—Н9	0.9500	C38—H38	0.9500
C10—C11	1.376 (9)	C39—C40	1.386 (12)
C10—H10	0.9500	С39—Н39	0.9500
C11—C12	1.388 (8)	C40—C41	1.337 (12)
CII—HII	0.9500	C40—H40	0.9500
C12—H12	0.9500	C41—C42	1.378 (10)
C13—C14	1.520 (10)	C41—H41	0.9500
C13—H13A	0.9900	C42—H42	0.9500
С13—Н13В	0.9900	C43—C44	1.521 (8)
C14—C15	1.458 (9)	C43—H43A	0.9900
C14—H14A	0.9900	C43—H43B	0.9900
С14—П14В	0.9900	C44—C45	1.310 (8)
U13—H13A	0.9800	U44—H44A	0.9900

C15—H15B	0.9800	C44—H44B	0.9900
C15—H15C	0.9800	C45—H45A	0.9800
C16—C17	1.384 (8)	C45—H45B	0.9800
C16—C21	1.392 (8)	C45—H45C	0.9800
S4—W1—S1	110.37 (6)	H15A—C15—H15B	109.5
S4—W1—S3	111.01 (6)	C14—C15—H15C	109.5
S1—W1—S3	107.67 (5)	H15A—C15—H15C	109.5
S4—W1—S2	112.73 (6)	H15B—C15—H15C	109.5
S1—W1—S2	107.37 (5)	C17—C16—C21	118.2 (5)
S3—W1—S2	107.48 (5)	C17—C16—P2	118.0 (4)
Cu3—W1—Cu1	73.06 (2)	C21—C16—P2	123.8 (4)
Cu3—W1—Cu2	75.35 (2)	C18—C17—C16	120.7 (6)
Cu1—W1—Cu2	71.69 (2)	C18—C17—H17	119.7
Cu1—I1—Cu2	67.91 (2)	С16—С17—Н17	119.7
P1—Cu1—S3	119.19 (6)	C19—C18—C17	120.6 (6)
P1—Cu1—S1	120.30 (6)	С19—С18—Н18	119.7
S3—Cu1—S1	103.18 (5)	C17—C18—H18	119.7
P1—Cu1—W1	153.07 (5)	C20—C19—C18	119.3 (6)
S3—Cu1—W1	52.37 (4)	С20—С19—Н19	120.3
S1—Cu1—W1	52.20 (4)	С18—С19—Н19	120.3
P1—Cu1—I1	106.09 (5)	C19—C20—C21	120.7 (6)
S3—Cu1—I1	105.67 (4)	C19—C20—H20	119.6
S1—Cu1—I1	99.94 (4)	C21—C20—H20	119.6
W1—Cu1—I1	100.82 (2)	C20—C21—C16	120.4 (6)
P2—Cu2—S1	119.38 (6)	C20—C21—H21	119.8
P2—Cu2—S2	121.62 (6)	C16—C21—H21	119.8
S1—Cu2—S2	103.81 (5)	C27—C22—C23	119.3 (5)
P2—Cu2—W1	152.86 (5)	C27—C22—P2	118.5 (4)
S1—Cu2—W1	52.18 (3)	C23—C22—P2	121.7 (5)
S2—Cu2—W1	52.40 (4)	C24—C23—C22	119.4 (7)
P2—Cu2—I1	108.79 (4)	C24—C23—H23	120.3
S1—Cu2—I1	97.69 (4)	С22—С23—Н23	120.3
S2—Cu2—I1	101.62 (4)	C25—C24—C23	121.0 (7)
W1—Cu2—I1	98.23 (2)	C25—C24—H24	119.5
P3—Cu3—S2	125.45 (6)	C23—C24—H24	119.5
P3—Cu3—S3	122.84 (6)	C26—C25—C24	119.3 (6)
S2—Cu3—S3	105.23 (5)	С26—С25—Н25	120.4
P3—Cu3—W1	163.37 (5)	С24—С25—Н25	120.4
S2—Cu3—W1	52.91 (4)	C25—C26—C27	121.2 (7)
S3—Cu3—W1	52.77 (4)	С25—С26—Н26	119.4
W1—S1—Cu2	73.71 (4)	С27—С26—Н26	119.4
W1—S1—Cu1	73.06 (4)	C22—C27—C26	119.7 (6)
Cu2—S1—Cu1	87.25 (5)	С22—С27—Н27	120.1
W1—S2—Cu3	73.15 (4)	С26—С27—Н27	120.1
W1—S2—Cu2	73.51 (4)	C29—C28—P2	113.9 (4)
Cu3—S2—Cu2	92.70 (6)	C29—C28—H28A	108.8
W1—S3—Cu3	73.21 (4)	P2C28H28A	108.8
W1—S3—Cu1	73.18 (4)	C29—C28—H28B	108.8
Cu3—S3—Cu1	89.22 (5)	P2-C28-H28B	108.8

C1—P1—C7	104.3 (3)	H28A—C28—H28B	107.7
C1—P1—C13	104.6 (3)	C30—C29—C28	112.3 (5)
C7—P1—C13	103.2 (3)	С30—С29—Н29А	109.2
C1—P1—Cu1	115.09 (19)	С28—С29—Н29А	109.2
C7—P1—Cu1	113.47 (19)	С30—С29—Н29В	109.2
C13—P1—Cu1	114.9 (3)	С28—С29—Н29В	109.2
C16—P2—C22	104.4 (2)	H29A—C29—H29B	107.9
C16—P2—C28	105.2 (2)	С29—С30—Н30А	109.5
C22—P2—C28	101.2 (2)	С29—С30—Н30В	109.5
C16—P2—Cu2	114.21 (17)	H30A—C30—H30B	109.5
C22—P2—Cu2	115.37 (18)	С29—С30—Н30С	109.5
C28—P2—Cu2	114.94 (17)	H30A—C30—H30C	109.5
C37—P3—C31	103.9 (3)	H30B-C30-H30C	109.5
C37—P3—C43	100.6 (3)	C36—C31—C32	118.6 (5)
C31—P3—C43	105.7 (3)	C36—C31—P3	123.7 (4)
C37—P3—Cu3	115.4 (2)	C32—C31—P3	117.8 (4)
C31—P3—Cu3	115.10 (17)	C33—C32—C31	120.4 (5)
C43—P3—Cu3	114.50 (19)	С33—С32—Н32	119.8
C2—C1—C6	117.9 (5)	С31—С32—Н32	119.8
C2—C1—P1	123.4 (4)	C34—C33—C32	120.7 (6)
C6—C1—P1	118.7 (4)	С34—С33—Н33	119.7
C1—C2—C3	119.9 (6)	С32—С33—Н33	119.7
C1—C2—H2	120.0	C33—C34—C35	119.5 (6)
С3—С2—Н2	120.0	C33—C34—H34	120.3
C4—C3—C2	120.9 (6)	С35—С34—Н34	120.3
С4—С3—Н3	119.5	C34—C35—C36	120.1 (6)
С2—С3—Н3	119.5	С34—С35—Н35	120.0
C5—C4—C3	119.7 (6)	С36—С35—Н35	120.0
С5—С4—Н4	120.2	C31—C36—C35	120.8 (6)
C3—C4—H4	120.2	С31—С36—Н36	119.6
C4—C5—C6	120.4 (6)	С35—С36—Н36	119.6
С4—С5—Н5	119.8	C42—C37—C38	119.1 (6)
С6—С5—Н5	119.8	C42—C37—P3	120.6 (5)
C5—C6—C1	121.2 (6)	C38—C37—P3	120.0 (5)
С5—С6—Н6	119.4	C39—C38—C37	119.6 (7)
С1—С6—Н6	119.4	С39—С38—Н38	120.2
C12—C7—C8	118.3 (5)	С37—С38—Н38	120.2
C12—C7—P1	120.8 (5)	C40—C39—C38	119.1 (8)
C8—C7—P1	120.8 (4)	С40—С39—Н39	120.4
C9—C8—C7	120.3 (6)	С38—С39—Н39	120.4
С9—С8—Н8	119.8	C41—C40—C39	121.3 (8)
С7—С8—Н8	119.8	C41—C40—H40	119.3
C8—C9—C10	119.8 (6)	С39—С40—Н40	119.3
С8—С9—Н9	120.1	C40—C41—C42	120.5 (8)
С10—С9—Н9	120.1	C40—C41—H41	119.7
C11—C10—C9	120.8 (6)	C42—C41—H41	119.7
С11—С10—Н10	119.6	C41—C42—C37	120.3 (7)
С9—С10—Н10	119.6	C41—C42—H42	119.9
C10—C11—C12	119.0 (6)	C37—C42—H42	119.9

C10—C11—H11	120.5	C44—C43—P3	112.6 (4)
C12—C11—H11	120.5	C44—C43—H43A	109.1
C7—C12—C11	121.8 (6)	P3—C43—H43A	109.1
C7—C12—H12	119.1	C44—C43—H43B	109.1
C11—C12—H12	119.1	P3—C43—H43B	109.1
C14—C13—P1	112.5 (5)	H43A—C43—H43B	107.8
C14—C13—H13A	109.1	C45—C44—C43	112.7 (5)
P1—C13—H13A	109.1	C45—C44—H44A	109.1
C14—C13—H13B	109.1	C43—C44—H44A	109.1
Р1—С13—Н13В	109.1	C45—C44—H44B	109.1
H13A—C13—H13B	107.8	C43—C44—H44B	109.1
C15-C14-C13	114.9 (6)	H44A—C44—H44B	107.8
C15—C14—H14A	108.5	C44—C45—H45A	109.5
C13—C14—H14A	108.5	C44—C45—H45B	109.5
C15-C14-H14B	108.5	H45A—C45—H45B	109.5
C13—C14—H14B	108.5	C44—C45—H45C	109.5
H14A—C14—H14B	107.5	H45A—C45—H45C	109.5
C14—C15—H15A	109.5	H45B—C45—H45C	109.5
C14—C15—H15B	109.5		
S4—W1—Cu1—P1	-1.55 (13)	S1—Cu1—S3—Cu3	-85.43 (6)
S1—W1—Cu1—P1	-83.29 (11)	W1—Cu1—S3—Cu3	-72.68 (4)
S3—W1—Cu1—P1	80.94 (11)	I1—Cu1—S3—Cu3	19.04 (5)
S2—W1—Cu1—P1	178.85 (11)	S3—Cu1—P1—C1	-54.4 (2)
Cu3—W1—Cu1—P1	138.44 (11)	S1—Cu1—P1—C1	176.6 (2)
Cu2—W1—Cu1—P1	-141.79 (11)	W1—Cu1—P1—C1	-118.1 (2)
S4—W1—Cu1—S3	-82.49 (8)	I1—Cu1—P1—C1	64.4 (2)
S1—W1—Cu1—S3	-164.23 (6)	S3—Cu1—P1—C7	65.6 (2)
S2—W1—Cu1—S3	97.92 (6)	S1—Cu1—P1—C7	-63.4 (2)
Cu3—W1—Cu1—S3	57.51 (5)	W1—Cu1—P1—C7	2.0 (2)
Cu2—W1—Cu1—S3	137.27 (5)	I1—Cu1—P1—C7	-175.5 (2)
S4-W1-Cu1-S1	81.74 (8)	S3—Cu1—P1—C13	-176.0 (3)
S3—W1—Cu1—S1	164.23 (6)	S1—Cu1—P1—C13	55.0 (3)
S2—W1—Cu1—S1	-97.86 (6)	W1—Cu1—P1—C13	120.4 (3)
Cu3—W1—Cu1—S1	-138.27 (5)	I1—Cu1—P1—C13	-57.1 (3)
Cu2—W1—Cu1—S1	-58.50 (4)	S1—Cu2—P2—C16	-38.1 (2)
S4—W1—Cu1—I1	175.99 (6)	S2—Cu2—P2—C16	-170.09 (19)
S1—W1—Cu1—I1	94.25 (5)	W1—Cu2—P2—C16	-101.8 (2)
S3—W1—Cu1—I1	-101.52 (5)	I1—Cu2—P2—C16	72.6 (2)
S2—W1—Cu1—I1	-3.61 (4)	S1—Cu2—P2—C22	-159.1 (2)
Cu3—W1—Cu1—I1	-44.02 (2)	S2—Cu2—P2—C22	68.9 (2)
Cu2—W1—Cu1—I1	35.75 (2)	W1—Cu2—P2—C22	137.2 (2)
Cu2—I1—Cu1—P1	144.60 (5)	I1—Cu2—P2—C22	-48.4 (2)
Cu2—I1—Cu1—S3	-87.95 (4)	S1—Cu2—P2—C28	83.6 (2)
Cu2—I1—Cu1—S1	18.89 (4)	S2—Cu2—P2—C28	-48.3 (2)
Cu2—I1—Cu1—W1	-34.24 (2)	W1—Cu2—P2—C28	20.0 (2)
S4—W1—Cu2—P2	-0.94 (13)	I1—Cu2—P2—C28	-165.68 (19)
S1—W1—Cu2—P2	81.23 (11)	S2—Cu3—P3—C37	-157.25 (19)
S3—W1—Cu2—P2	177.22 (11)	S3—Cu3—P3—C37	55.3 (2)
S2—W1—Cu2—P2	-87.04 (11)	W1—Cu3—P3—C37	124.5 (2)

Cu3—W1—Cu2—P2	-142.85 (11)	S2—Cu3—P3—C31	-36.1 (2)
Cu1—W1—Cu2—P2	140.49 (11)	S3—Cu3—P3—C31	176.4 (2)
S4—W1—Cu2—S1	-82.17 (8)	W1—Cu3—P3—C31	-114.4 (2)
S3—W1—Cu2—S1	95.99 (6)	S2—Cu3—P3—C43	86.6 (2)
S2—W1—Cu2—S1	-168.27 (6)	S3—Cu3—P3—C43	-60.8 (2)
Cu3—W1—Cu2—S1	135.92 (5)	W1—Cu3—P3—C43	8.4 (3)
Cu1—W1—Cu2—S1	59.26 (4)	C7—P1—C1—C2	131.6 (6)
S4—W1—Cu2—S2	86.10 (8)	C13—P1—C1—C2	23.6 (7)
S1—W1—Cu2—S2	168.27 (6)	Cu1—P1—C1—C2	-103.4 (5)
S3—W1—Cu2—S2	-95.74 (6)	C7—P1—C1—C6	-49.4 (5)
Cu3—W1—Cu2—S2	-55.81 (5)	C13—P1—C1—C6	-157.5 (5)
Cu1—W1—Cu2—S2	-132.47 (5)	Cu1—P1—C1—C6	75.5 (5)
S4—W1—Cu2—I1	-175.54 (7)	C6—C1—C2—C3	0.6 (10)
S1—W1—Cu2—I1	-93.37 (5)	P1-C1-C2-C3	179.6 (6)
S3—W1—Cu2—I1	2.62 (5)	C1—C2—C3—C4	0.3 (12)
S2—W1—Cu2—I1	98.36 (5)	C2—C3—C4—C5	-1.0 (12)
Cu3—W1—Cu2—I1	42.55 (2)	C3—C4—C5—C6	0.7 (11)
Cu1—W1—Cu2—I1	-34.11 (2)	C4—C5—C6—C1	0.2 (10)
Cu1—I1—Cu2—P2	-143.59 (5)	C2—C1—C6—C5	-0.9 (9)
Cu1—I1—Cu2—S1	-18.92 (4)	P1-C1-C6-C5	-179.9 (5)
Cu1—I1—Cu2—S2	86.96 (4)	C1—P1—C7—C12	142.3 (5)
Cu1—I1—Cu2—W1	33.81 (2)	C13—P1—C7—C12	-108.6 (5)
S4—W1—Cu3—P3	3.64 (19)	Cu1—P1—C7—C12	16.3 (5)
S1—W1—Cu3—P3	-175.22 (17)	C1—P1—C7—C8	-41.2 (5)
S3—W1—Cu3—P3	-80.55 (17)	C13—P1—C7—C8	67.9 (5)
S2—W1—Cu3—P3	90.54 (17)	Cu1—P1—C7—C8	-167.2 (4)
Cu1—W1—Cu3—P3	-138.54 (17)	C12—C7—C8—C9	-0.7 (9)
Cu2—W1—Cu3—P3	146.52 (17)	P1—C7—C8—C9	-177.3 (5)
S4—W1—Cu3—S2	-86.90 (8)	C7—C8—C9—C10	0.9 (9)
S1—W1—Cu3—S2	94.24 (6)	C8—C9—C10—C11	-0.9 (10)
S3—W1—Cu3—S2	-171.09 (7)	C9-C10-C11-C12	0.8 (10)
Cu1—W1—Cu3—S2	130.92 (5)	C8—C7—C12—C11	0.6 (9)
Cu2—W1—Cu3—S2	55.97 (5)	P1-C7-C12-C11	177.2 (5)
S4—W1—Cu3—S3	84.19 (8)	C10-C11-C12-C7	-0.6 (10)
S1—W1—Cu3—S3	-94.67 (6)	C1—P1—C13—C14	176.6 (6)
S2—W1—Cu3—S3	171.09 (7)	C7—P1—C13—C14	67.8 (7)
Cu1—W1—Cu3—S3	-57.99 (5)	Cu1—P1—C13—C14	-56.3 (7)
Cu2—W1—Cu3—S3	-132.93 (5)	P1-C13-C14-C15	-167.9 (6)
S4—W1—S1—Cu2	133.16 (5)	C22—P2—C16—C17	79.5 (5)
S3—W1—S1—Cu2	-105.53 (5)	C28—P2—C16—C17	-174.4 (4)
S2—W1—S1—Cu2	9.93 (5)	Cu2—P2—C16—C17	-47.4 (5)
Cu3—W1—S1—Cu2	-47.70 (4)	C22—P2—C16—C21	-100.2 (5)
Cu1—W1—S1—Cu2	-92.11 (4)	C28—P2—C16—C21	5.9 (5)
S4—W1—S1—Cu1	-134.73 (5)	Cu2—P2—C16—C21	132.9 (4)
S3—W1—S1—Cu1	-13.42 (5)	C21—C16—C17—C18	1.2 (9)
S2—W1—S1—Cu1	102.04 (5)	P2-C16-C17-C18	-178.6 (5)
Cu3—W1—S1—Cu1	44.41 (4)	C16—C17—C18—C19	-0.9 (10)
Cu2—W1—S1—Cu1	92.11 (4)	C17—C18—C19—C20	0.3 (10)
P2—Cu2—S1—W1	-148.84 (6)	C18—C19—C20—C21	-0.1 (10)

S2—Cu2—S1—W1	-9.55 (5)	C19—C20—C21—C16	0.4 (10)
I1—Cu2—S1—W1	94.48 (3)	C17—C16—C21—C20	-0.9 (9)
P2—Cu2—S1—Cu1	138.01 (6)	P2-C16-C21-C20	178.8 (5)
S2—Cu2—S1—Cu1	-82.69 (6)	C16—P2—C22—C27	-161.2 (4)
W1—Cu2—S1—Cu1	-73.15 (4)	C28—P2—C22—C27	89.7 (5)
I1—Cu2—S1—Cu1	21.33 (4)	Cu2—P2—C22—C27	-35.0 (5)
P1—Cu1—S1—W1	148.60 (6)	C16—P2—C22—C23	26.4 (6)
S3—Cu1—S1—W1	12.78 (5)	C28—P2—C22—C23	-82.7 (5)
I1—Cu1—S1—W1	-96.05 (3)	Cu2—P2—C22—C23	152.5 (5)
P1—Cu1—S1—Cu2	-137.59 (6)	C27—C22—C23—C24	0.0 (10)
S3—Cu1—S1—Cu2	86.58 (5)	P2-C22-C23-C24	172.4 (5)
W1—Cu1—S1—Cu2	73.81 (4)	C22—C23—C24—C25	-1.7 (11)
I1—Cu1—S1—Cu2	-22.24 (4)	C23—C24—C25—C26	2.2 (12)
S4—W1—S2—Cu3	130.20 (5)	C24—C25—C26—C27	-1.0 (11)
S1—W1—S2—Cu3	-108.04 (5)	C23—C22—C27—C26	1.1 (9)
S3—W1—S2—Cu3	7.55 (6)	P2-C22-C27-C26	-171.5 (5)
Cu1—W1—S2—Cu3	-50.10 (4)	C25—C26—C27—C22	-0.6 (10)
Cu2—W1—S2—Cu3	-98.11 (5)	C16—P2—C28—C29	-176.6 (4)
S4—W1—S2—Cu2	-131.70 (5)	C22—P2—C28—C29	-68.1 (4)
S1—W1—S2—Cu2	-9.93 (5)	Cu2—P2—C28—C29	56.9 (4)
S3—W1—S2—Cu2	105.66 (5)	P2-C28-C29-C30	180.0 (4)
Cu3—W1—S2—Cu2	98.11 (5)	C37—P3—C31—C36	-101.5 (5)
Cu1—W1—S2—Cu2	48.01 (4)	C43—P3—C31—C36	3.9 (6)
P3—Cu3—S2—W1	-159.43 (6)	Cu3—P3—C31—C36	131.3 (4)
S3—Cu3—S2—W1	-7.34 (5)	C37—P3—C31—C32	77.4 (5)
P3—Cu3—S2—Cu2	128.70 (7)	C43—P3—C31—C32	-177.1 (4)
S3—Cu3—S2—Cu2	-79.21 (6)	Cu3—P3—C31—C32	-49.7 (5)
W1—Cu3—S2—Cu2	-71.87 (4)	C36—C31—C32—C33	2.1 (8)
P2—Cu2—S2—W1	147.65 (6)	P3—C31—C32—C33	-176.9 (4)
S1—Cu2—S2—W1	9.52 (5)	C31—C32—C33—C34	-2.8 (9)
I1—Cu2—S2—W1	-91.50 (3)	C32—C33—C34—C35	1.4 (9)
P2—Cu2—S2—Cu3	-140.81 (6)	C33—C34—C35—C36	0.5 (10)
S1—Cu2—S2—Cu3	81.06 (6)	C32—C31—C36—C35	-0.1 (9)
W1—Cu2—S2—Cu3	71.54 (4)	P3—C31—C36—C35	178.8 (5)
I1—Cu2—S2—Cu3	-19.96 (5)	C34—C35—C36—C31	-1.2 (10)
S4—W1—S3—Cu3	-131.24 (6)	C31—P3—C37—C42	-143.2 (5)
S1—W1—S3—Cu3	107.85 (5)	C43—P3—C37—C42	107.6 (5)
S2—W1—S3—Cu3	-7.54 (6)	Cu3—P3—C37—C42	-16.2 (5)
Cu1—W1—S3—Cu3	94.37 (5)	C31—P3—C37—C38	42.7 (5)
Cu2—W1—S3—Cu3	50.12 (5)	C43—P3—C37—C38	-66.5 (5)
S4—W1—S3—Cu1	134.38 (6)	Cu3—P3—C37—C38	169.7 (4)
S1—W1—S3—Cu1	13.47 (5)	C42—C37—C38—C39	-1.6 (9)
S2—W1—S3—Cu1	-101.92 (5)	P3—C37—C38—C39	172.6 (5)
Cu3—W1—S3—Cu1	-94.37 (5)	C37—C38—C39—C40	0.3 (10)
Cu2—W1—S3—Cu1	-44.26 (4)	C38—C39—C40—C41	0.7 (11)
P3—Cu3—S3—W1	160.37 (6)	C39—C40—C41—C42	-0.4 (12)
S2—Cu3—S3—W1	7.36 (5)	C40—C41—C42—C37	-1.0 (11)
P3—Cu3—S3—Cu1	-126.98 (6)	C38—C37—C42—C41	2.0 (9)
S2—Cu3—S3—Cu1	80.01 (6)	P3—C37—C42—C41	-172.2 (5)

W1—Cu3—S3—Cu1 P1—Cu1—S3—W1 S1—Cu1—S3—W1 I1—Cu1—S3—W1 P1—Cu1—S3—Cu3	72.65 (4) -149.18 (6) -12.75 (5) 91.72 (3) 138.14 (6)	C37—P3—C43—C44 C31—P3—C43—C44 Cu3—P3—C43—C44 P3—C43—C44—C45		-65.6 (5) -173.5 (4) 58.8 (5) 176.9 (4)
Hydrogen-bond geometry (Å, °) D—H···A C10—H10···I1 ⁱ Symmetry codes: (i) $x+1, y, z$.	<i>D</i> —Н 0.95	H…A 3.14	<i>D…A</i> 3.936 (7)	<i>D</i> —H… <i>A</i> 142

Fig. 1

